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Transform Methods for Linear Systems

By Michael O’Flynn

Professor of Electrical Engineering, San Jose State College

This is a highly condensed collection of reference material
on transform methods. Formulas for direct and inverse
Fourier, Laplace, and Z-transforms are given in compact
tabular form, with examples of how they are used to find
system responses for several types of inputs.

Transforms are powerful tools for solving linear time-
invariant system problems, such as

Given the input x{t)—»- 31 find the output y(t)

=
2(0) the Impulse response |
[ fhe svstem —— |

Depending upon the system and the excitation, the most
convenient transforms to use might be Fourier transforms,
one- or two-sided Laplace transforms, or one- or two-sided
Z-transforms. These transforms are treated in many text-
books (such as references 1 and 3 in Bibliography), and no
attempt has been made to give an exhaustive treatment here.
To the author’s knowledge, however, there is nothing in the
literature equivalent to Table I, which is a comprehensive
collection of the defining formulas for all of these trans-
forms and their inverses. The arrangement and notation of
this table are designed to demonstrate the similarities and
interrelationships between the different transforms. A fea-
ture of the treatment of inverses is a logical progression
from the fundamental inverse formulas to their equivalents
in terms of complex variables (contour integrals, residues,
Laurent series).

Table IT applies transform methods to the problem of
finding the output of a linear system for five types of input
signals. In each case the transform used is the most appro-
priate one for the type of input.

These tables can be used as a reference by anyone work-
ing in the field of linear systems or — along with a textbook
— by students of linear system theory. As an aid to the
student, Table III lists the impedances of the basic network
elements R, L, and C for the five classes of inputs.

Classes of Inputs
In the tables and discussion that follow, five classes of
inputs are considered. They are:
i) A damped sinusoidal input x(z) = Ae %’ cos (vt + o)
: 0
ii) A periodic input x(¢) = Z Ay cos (Mgt + )
n=0

iii) An aperiodic input which has a Fourier or a Laplace
transform.

iv) A sampled input x*(¢) known only at specified points.

v) A random input, where x(#) is a member of an ergodic
random process for which the autocorrelation function
R,(+) and its Fourier transform §,(j») are known.

As an example of the use of the transforms, the aperiodic
case (iii) will be discussed in detail. The sampled case (iv)
is similar to the aperiodic case except that Z-transforms are
used instead of Laplace transforms. The first two cases, i.e.,
periodic and damped sinusoidal inputs, are well known.

For random inputs (case v) the problem can be restated
as follows: Given the input autocorrelation function R,(7)
and the system function, find the output autocorrelation
function R, (7). With this modification, the problem is similar
to the aperiodic case.

Inverses by Complex Variable Methods

The problem of finding the output of a linear system
whose input and system function are known may be re-
garded as an exercise in finding inverse transforms. Inverses
can be found either by looking them up in a table of trans-
forms, or directly, by computing them using the inverse
formulas given in Table I. The direct approach requires a
knowledge of complex variables and contour integration,
but it gives more insight into the physical meaning of the
solutions.* For example, the inverse expressions contain
full information about the natural frequencies of the system,

Linear System Output for Aperiodic Input
The output of a linear system for an aperiodic input
x(1) is

o+foo

() = —1*‘ H()X(s)estds.
277] g-jco

Here the Laplace transform has been used. H(s) is the
system function and X(s) is the transform of the input x(?).

If the one-sided Laplace transform is used, and if Jordan’s
Lemma is satisfied (usually this means simply that
H(s5)X(s)—0 as s— o) then

Yy =0,t<0
y(¥) = sum of the residues of the poles of H(s)X(s)e??, t > 0.

The complete response y(f) consists of two parts. One is
the forced response y(¢), in which only the input frequencies
appear. [The input x(#) is often called the forcing function.]
The other part of y(2) is the transient response y (9.

* \f a transform has an infinite number of poles (e.g., a discontinuous function, such

as _[ L) it may be difficult or impossible to apply the complex-variable formulas, In
such cases, time-domain analysis may be simpler than transform methads.

Reprints of this article are available. Write
Editor, Hewlett-Packard Journal, 1501 Page Mill |
Road, Palo Alto, California 94304. l
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Table I Definitions of Different
Transforms with their Inverses

3
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Fourier Transform

Laplace Transform (Two-sided)

Laplace Transform

One-sided)

Z-Transform (Two-sided)

F(jo) = f T He e

F(jw) is defined for o rcal and
exists if

F(s) ::[m f(Hestdt

S=o+ jo

F(s) exists if

F(s) :/‘mf(t)e‘”d

s=o - jo

F(s) exists if

=~

£4() = 3 108G — nT)

F@) =3 fmz

or:

j 1 1) | dt exists /-m »
- f(He=st | dt exists f f(te—*t | dt exists :
—ml | 0 | | F(Z):F*(s)‘ . eT
z=e
This integral exists in some allow- | This integral exists im some allow- ‘>
able region of convergence able region of convergence o > ¢, | This exists in an allowable annulus
o < o <o of lconvergence r, < |z] < re
!
1 /..m 1 Yogtion 1 o +ioc . 1 ¢‘
; — ——— im)elwt —— st i al st — -1
f0) =5~ ,,wF (jo)e'v do 1@ 2. /U i F(s)e*tds (@) el f(s)e*tds f(»y) 3 J F(z)z+1dz
which may be cvaluated directly| y )
or from tables NS o0 <o oo > where C is a circle of radius r,
Fort < 0 Forz> 0 sugh thatr, < r, < 1.
or
. Forn=0
10 = 5= [ Ferdge) ‘ds
24J

Vel

1 jun
—— F N3t .
2"1JCm (e dsS:]m
Fort <0

1) = 2Lﬂ.gls‘zr(s)ewds
C.

poles in right half

<Sum of residues of
N plane. >

Fort >0
J— ._.1_ o8t
f0 =75 gﬁF(s)c ds
C.

= Sum of residues of poles in
left half plane.

/

i) = EL—] gﬁ F(s)estds
(o

Sum of residues of
— — | poles with real parts
to right of o,.

Fort > 0,

1
— £37
= gﬁF(s)e ds

C.

— Sum of residues of poles
with real parts to left of o..

Note: Residues are defined for
counterclockwise contours. Con-
tour C, is clockwise. The integral
around C, is, therefore, minus the
sum of the residues of the enclosed
poles.

() — 2%] gS F(s)ett
C

= Sum of residy

es of poles of

F(s).[C encloses all poles of

F(s).]

Note: As a conseq
definition of the on
form an acceptable
ically to the right o
F(s).

PN §

uence of the
e-sided trans-
re is automat-
the poles of

f(n) = sum of residues of F(z)z"*
‘ inside C.

Férn<0

f(n) = sum of residues of F(z)z**
outside C.

Note: the formula for f(n) is the
formula for the coefficients of the
Ldurent series for F(z) (see Ap-
pendix).
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i)

Z-Transform (One-sided)

P = S fms(t — nT)

n=0

F@) =3 fne

n=0

or
F@ = F*O), _

This exists in an allowable region
of convergence outside a circle
centered at the origin.

Hom) — 2% gﬁ FG)zidz
C

where C encloses all the poles of
F(Z)Znﬁ

f(n) = sum of the residues of
F(x)zn

Note: the formula for f(n) is the
;+ formula for the cocfficients of the
Laurent series for F(z) (sece Ap-
pendix).

Im(z)

Table 11T
Impedance Table _
. Impedance of Network Element: Z(s) = Yis).
Type of Input i(t) Transformed Input /(s)
L c
i) Damped Sinusoidal A et le o . 1l
A e%* cos (vt + $o) § = —0a + juo Cs‘s — ot
— — 0Ov oy
Special Cases L
a) Sinusoidal, o, =0 A eIt LSIS = Juq ol
phasor ‘S = Jeo
b) Exponential, A notation Ls| . 1)
wy =0, =0 §= Cé‘\s— o
- — Uo
c) dccase, o, = 0, A Ls| —0 1]
wO:O,gbU:O §= CA'X__O
short -
circuit open circuit

ii) Periodic
o0
> Ay cos (oot - $a)
n=0

Same as casc i) using superposition.
Each harmonic has an impedance associated with it as in (i) (a).

iii) Aperiodic i(f)

1(s) = / W v

Fourier Transform Ls , L
o 5§ = jo Cs| .
o) = j i) ety =l
—00
if integral exists
!
Laplace Transform Ls Cs

iv) Sampled i*(n)

Z-transforms.

System functions for sampled data systems are usually computed
first as ratios of Laplace transforms and then converted to

v) Random i(?)

Autocorrelation
Function = R;(7)

Power Spectral
Density
Si(jw) =

/ Ry(Deordy

S:jm

1
[C{vz .
‘ § = Juo

Note: Sy(jw) = | Z(jo) |? 8i(jw)

Only the poles of X(s) contribute to the forced
response. The poles of H(s) give the natural fre-
quencies of the system and contribute to the
transient response. If we denote the poles of X(s)
as §;, 8, . - ., 5, and the-poles of H(s) as S,, S.,

., 8y, and assume zero initial conditions, the
response y(z) is

y@ =38 + y. (D
n m
pmomd Z ¥ + Z R'i
Q=1 d=1
where r; denotes the residue of pole s, in
H(s)X(s)est and

R, denotes the residue of pole S, in
H(s)X(s)est.

If the poles of H(s) and X(s) are all simple
and distinct, and if the poles of H(s) do not
cancel the zeros of X(s) or vice versa, then all
residues will be of the form

A
A
r, = rie“%t and Ri = Riesﬁ

See the Appendix or reference 2 for methods
of computing residues.

If the initial conditions are not zero the com-
plete response can be obtained to within mz arbi-
trary constants. Again assuming simple, distinct
poles and no pole-zero cancellation, y(¢) will be

n m
y(t) = Z v -+ ZAieS»t.
i=1 i=1

The constants 4 ; are determined from the initial
conditions, which are usually given as values of
¥() and its derivatives at ¢t = 0.

For many forcing functions and for most
systems, the forced response y(¢) is the steady-
state responsc. Examples of aperiodic inputs for
which this is true are step functions, ramp func-
tions, and suddenly applied periodic functions.

However, if the time constants of the natural
frequencies — poles of H(s) — are greater than
the time constants of the input frequencies —
poles of X(s) — then the forced response will
decay to zero faster than the transient response.
In some systems, such as those made up of only
L and C, and no R, the transient response will
not die out at all. The transient response, there-
fore, may actually be the total steady-state
response. =
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Type of Input

Transform of Input

Transform of Outg

ut Output

Damped Sinusoidal
x(t) = A et cos (vt + Po)

In phasor notation:

X(s) = jrA [€/%8(s — 5,)
| 7% 8(s — 50™)]
So = —ay + jeo

Y(s) = H(9)X(s)

y(t) — i;_ [H(su)ej¢uesot_’_}_ H(so*)e"j‘”"e“o*"]
= Re[H(s,) A ei%est]

XT o= A ej By
It is understood that this means
x() = Re[A eitwest]

Yy = H(s0) X~

¥(©) = Re[H(s5,) X re*¥]

Periodic

(2o}
x(f) = 3 Ay cos (Ragt + pn)

n=0

Transform of the nth harmonic
Xn(]w) = wAn[|2j¢n3(a) — no)o)
+ €78 -+ Auo)]

By superposition

Y(o) = 3" H(io) X,

n=0

ap
y(t) = Z Re[H(iMa)“) A”ef(ﬁ,,einmot]

n=0

)

R,(v) = Input Autocorrelation
Function

Soljo) = [ Ry(r)e-ivrdr

Sy(jm) == | H(]ﬂ’) lz Sm(i )

[o]
In phasor notation: | X, = Aye/* Y, = H(jnw) X, ¥ = 3 Re[H(jna,) Xpei o]
n=0
« [¢e]
X(jo) = f e Tvtde 1 , , )
) -0 e Y (jo) = H{jo)X (jo) Y === f [H(jw) X(ju)le’* dw
Aperiodic if integral exists, or | or - .
x(®) or Y() — HOXG) | Y Rk
o - ' H=—5— f H(s)X (s)]e*d.
X(s) — f x(D)e-tdt =55 i | ()X ()] ds
-0
Y(2) = H(z)X(=z)
Sampled . where 1
3 X(2) = 2, x(mz™ H(z) = 3 h(m)z™ Wn) = *-¢H(Z)X(z)zz""ldz
X0 = 3 x(m)3 (t — nT) (@) =2, x(mz (@) = 2 hoyz 2mi
n=-co C
where
h(n) — unit pulse resppnse
Random Input Power Spectral Density Output Autocorrelation Function

R = 5 f 11 #G) [5.G01 e

Appendix. Complex-Variable Formulas

1. gﬁ fe)dz = 0

C

2. (ﬁ g(z)dz = 2zj ., [residues of poles of g(z) inside Cl].

C

if f(z) is analytic on and inside the
closed contour C.

If g(z) has an nth-order pole at z, then

1
residue of z, = m l:_——

Bibliography

1. R. M. Bracewell, ‘The Fourier Transform and Its Appli-
cations;, McGraw-Hill Book Company, 1965. This is a very
good treatment of the physical applications of the Fourier

Transform.

2. R. V. Churchill, ‘Introduction to Complex Variables and
Applications; Second edition, McGraw-Hill Book Company,
1960. Chapters 5, 6, and 7 discuss evaluation of residues.

3. R. J. Schwarz and B. Friedland, ‘Linear Systems;

dn-1

d G 1.

{(z - zo)”g(z)}:l ‘=z

3. If f(z) is analytic on C, and C, and in the region between

them, then

f(z) can be represented in that region by a

Laurent Serjgs.

Q0
@)= Anlz — zo)
n=-00
1 1)
where 4, H —ZT] W dz.
C
o C is any clrve between C, and C, and enclosing z,.

McGraw-Hill Book Company, 1965, Chapters 6 and 8 con-

tain detailed
respectively.
4. B. C. Kuo,
Book Compan
tions and impu
5. E. Brenner
Second edition

discussions of Laplace and Z-transforms,

inear Networks and Systems;, McGraw-Hill
y, 1967. Chapter 11 discusses transfer func-
Ise responses of linear systems.

and M. Javid, ‘Ahalysis of Electric Circuits;
,: McGraw-Hill Book Company, 1967,

HEWLETT-PACKARD JOURNAL ﬁ?ocroae

TECHNICAL INFORMATION FROM THE LABORATORIES OF THE HEWLETT-PACKARD COMPANY PUBLISHED AT 150t PAGE MILL ROAD. PALO ALTO, CALIFORNIA 94304
Editorial Stall: F. J. BURKHARD, R. P. DOLAN, L. D. SHERGALIS, R. H. SNYDER Art Director: R. A, ERICKSON

i

i

1967 Volume 19 * Number 2

Approved For Release 2005/11/21 : CIA-RDP78-03576A000100010018-1




B T N e L TACRBINR RN R

The course ResGlPforRilddse 66“5/%‘11/%“ ‘EnlkDP78:03575b00700010018-1
s antveix Tormatas
I. L]

1 Vectvorial Representation of Veriableas

menipulationg; vectorial products; orthogonality;
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The intent hero wag to develop o hase communlceations in
the course, to sob vho context of terminolc and to
introduce the scguenco to a gwoup which Mvd indlcated
strength in the 'Op|g 2l dres, Applications were treated,
homevior: wo'L 3 cive Jowrnal

T "uions end f;(\vc,f'fl wepresentae
reprrinta we gtributed bh'”OUfh the month, between

(638} ..%'ll.!).).{_.v; [S¥CY:

-J2 O

Tl YLineaw .Sy.> bem Varlabless convolutiong L: 'p'J ace manipulationds
applications to Llinear differcntial eguationsg dawmnling
considerationg; impulse responscgs gysbem Llow diag . :

Z Wrangformg ; .,cme'n,ug.g s numerlical methods: Gouss! elimination,

matrio e

Tho goal here was o backtrack into the proevious sogsion,
held & month previously and to epply the cas slier dovel oped
tooly to s:mofc, Linegr gystons, Some Linea P'L'/ri;:ov gehenes
wero rabionali sods sémp.to clpO.LLO"l"LJ"l ons werce btreated in
clags to varying depths, gencrally on a deterministic

basig, : , -
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probleag, fThe atbeupt was to tic in the d¢&010ue abs b““CL
varlable bo several phy“;ch IbuauLOMno Applications

were framed to wepeat the use of mabterial of the sceosions,

. ’ )
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To Gausslan: filtering and averagling: corvelablon; ocmvo]utioq;
cwo”“~c>no~ta'xou, covariance matrizy power spectral cgtimates:

band Linmiti effeects,

Lo
k_)
Yhe dntent in this session was to relate single continuous
variables to the arrey of toollg gvailable to handle generaligzed
data baseg, Poiwbs of relevance were medc to tio in the
13"‘(’0060--‘—1'-‘{-5 sessiong to space-timo variobles found in a nunber
oft dAlsciplines, mpevimental date was developod in handoubs
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e
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gingle dilmenslion cascy condiu¢oqal prrobabili vy

Feedhack at thisg point showed fhat the pace of preocceeding
cseasions was too fasto T4 was attempiod to wocaplitulate
cunulotive mabor:

Vi Detector Subsystems: one dimonsiohal stgnal and nolsos

detcotiOh, Oco gion threshold; optinum processing; recelvenr
operating Chdﬂu@b@fimulﬁsg intenlference e¢ifects Trom
arbilent noise, system nolsc, dopplcwp revevrberation,
charmel uncertainty in a varliety OL appllcations,

Tt had been hoped here that a consistent approach on o get
of cmnunomﬁtLuy U1systom.funcp¢ous‘cogid be made fov
cnsuing segsiong, The detection function isg the most
common across a varlebty of disciplings with applications ,
ozﬂmoi>3 in blomedlicine, radav, CQ@MuuLC&Llonr_ acousgtics, optics,

and in selgmlics,

VIL Detector Subgystemes optﬁmum detectiong prevhiteailng:

HMarvkov nolse; detectability critoria; COhOWOQu pTOCO.uLMQS
energy detectiong contidonce MOAHUES Studentg! € ﬂﬁqbo

Continued work on detecbtion Ffunchbiong,

VILL Specoe-Tine 1%0@0 sging Subgyetems: moltisgceagor arvays

i §
aignal gnd, noise metrices: prewhiterdings matcehed filtersy

e
dotedd 'c aversging schemes,
The Linear arrey & and its vardations was the central model
for tWo segsionsg on %pa:mll heystens,.  This had been

subeys
cited agw an area requirivg emphasls carller,

X Spetial Processorg: opltimal srraysy lobes in time and spacc;
cohertency: dobectability for soveral convaUOﬂnu:ons;
noar Lield/fer ficld considorations; noneplanar wavelronts,.

ITntent here was to Dieing in the cumulative sotb ol modcling
toold to a group of gpatlial aoan(gunoMuo
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